ECE 121 Electronics (1)

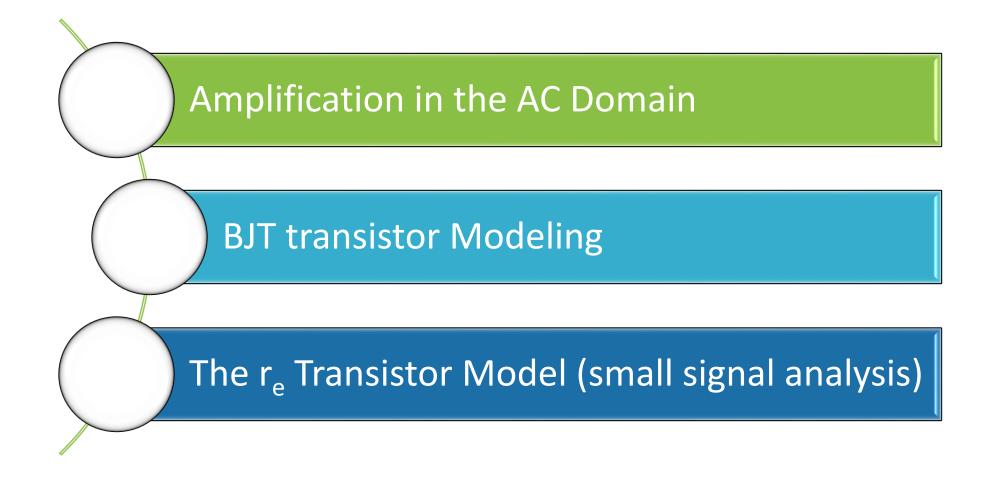
Lec. 5: BJT Modeling and re Transistor Model (small signal analysis)

Instructor

Dr. Maher Abdelrasoul

http://www.bu.edu.eg/staff/mahersalem3

Agenda

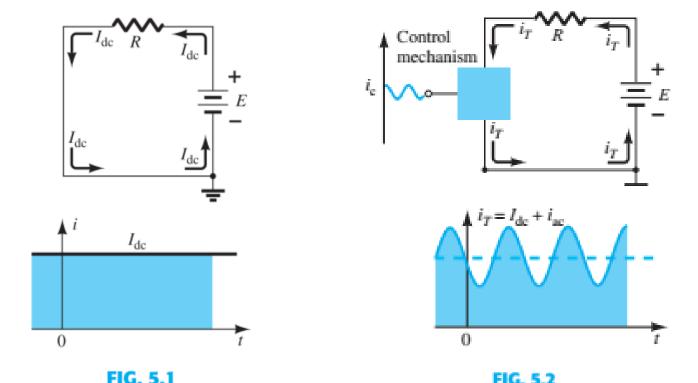


Amplification in the AC Domain

Amplification in the AC Domain

 $\eta = P_o/P_i$ cannot be greater than 1.

In fact, a *conversion efficiency* is defined by $\eta = P_{o(ac)}/P_{i(dc)}$, where $P_{o(ac)}$ is the ac power to the load and $P_{i(dc)}$ is the dc power supplied.



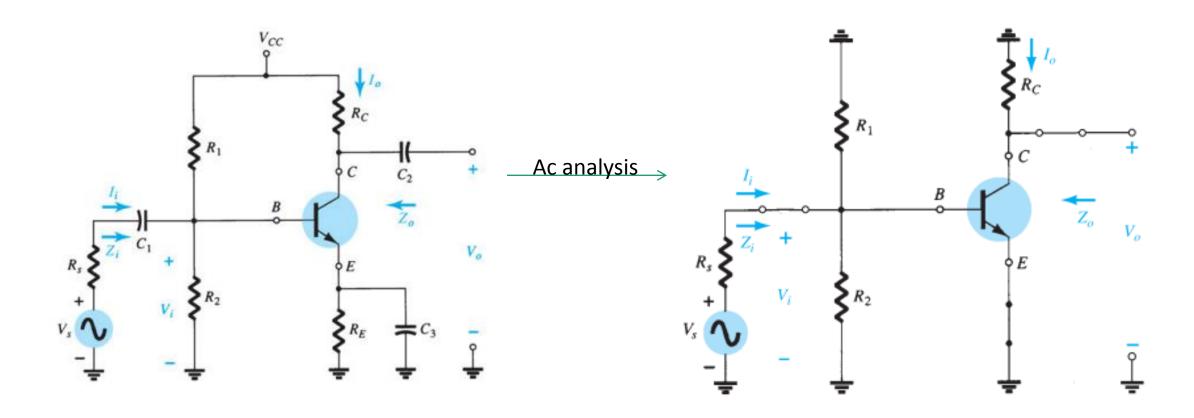
Steady current established by a dc supply.

Effect of a control element on the steady-state flow of the electrical system of Fig. 5.1.

The superposition theorem is applicable for the analysis and design of the DC and AC components of a BJT network, permitting the separation of the analysis of the dc and ac responses of the system.

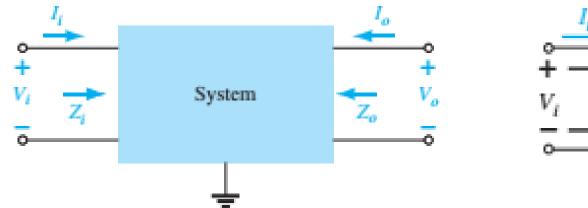
BJT Transistor Modeling

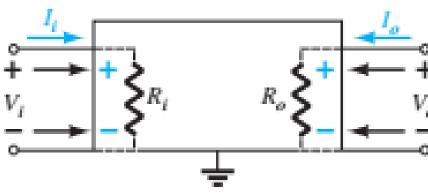
BJT Transistor Modeling



BJT Transistor Modeling (1 of 2)

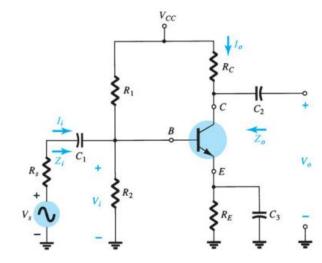
- A model is a combination of circuit elements, properly chosen, that best approximates the actual behavior of a semiconductor device under specific operating conditions.
- Any electronic system has some important parameters have to be determined
 - Input and Output Voltage
 - Input and Output Impedance
 - Input and Output Current

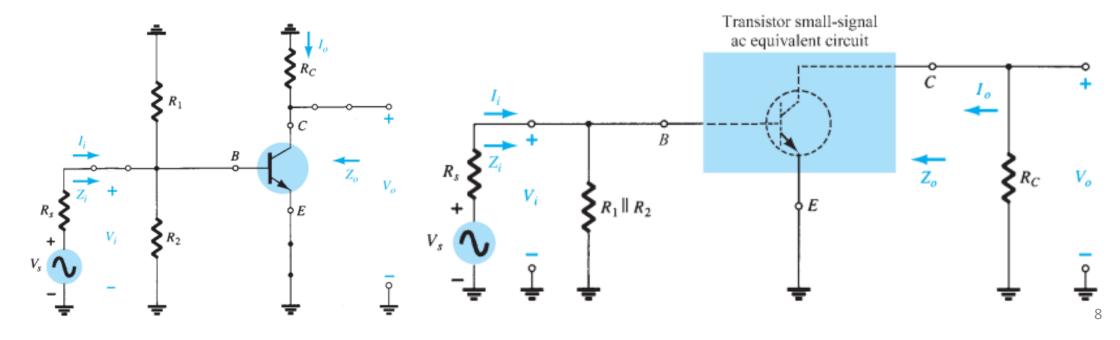




BJT Transistor Modeling (2 of 2)

- The ac equivalent of a transistor network is obtained by:
 - 1. Setting all <u>dc sources</u> to zero and replacing them by a short-circuit equivalent
 - 2. Replacing all <u>capacitors</u> by a short-circuit equivalent
 - 3. Removing all elements bypassed by the short-circuit equivalents introduced by steps 1 and 2
 - 4. Redrawing the network in a more convenient and logical form





The r_e Transistor Model

- Common Emitter Configuration
- Common Base Configuration
- Common Collector Configuration
- r_e Model in Different Bias Circuits

The r_e Transistor Model (CE)

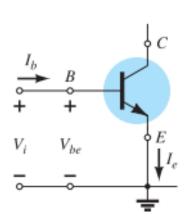


FIG. 5.8

Finding the input equivalent circuit for a BJT transistor.

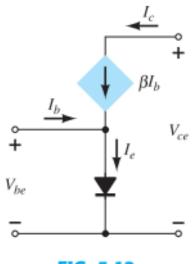


FIG. 5.12

BJT equivalent circuit.

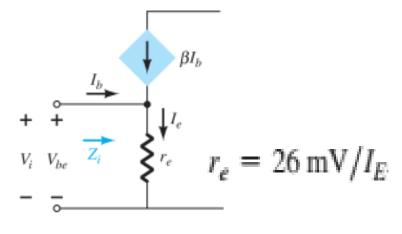


FIG. 5.13

Defining the level of Z_i.

$$Z_i = \frac{V_i}{I_b} = \frac{V_{be}}{I_b}$$

$$V_{be} = I_e r_e = (I_c + I_b) r_e = (\beta I_b + I_b) r_e$$

$$= (\beta + 1) I_b r_e$$

$$Z_i = \frac{V_{be}}{I_b} = \frac{(\beta + 1) I_b r_e}{I_b}$$

$$Z_i = (\beta + 1)r_e \cong \beta r_e$$

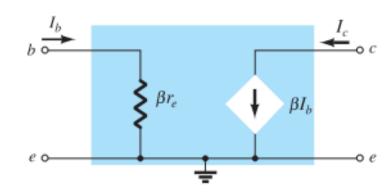


FIG. 5.14
Improved BJT equivalent circuit.

The r_e Transistor Model (CE)

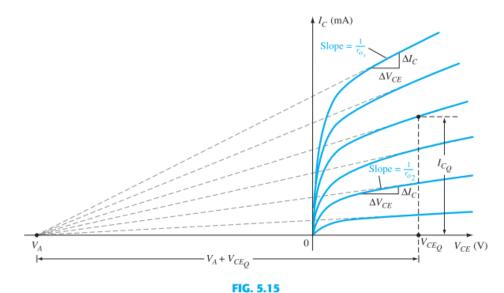
Early Voltage

Slope =
$$\frac{\Delta y}{\Delta x} = \frac{\Delta I_C}{\Delta V_{CE}} = \frac{1}{r_o}$$

$$r_o = \frac{\Delta V_{CE}}{\Delta I_C}$$

$$r_o = \frac{\Delta V}{\Delta I} = \frac{V_A + V_{CE_Q}}{I_{C_Q}}$$

$$r_o \cong \frac{V_A}{I_{C_Q}}$$



Defining the Early voltage and the output impedance of a transistor.

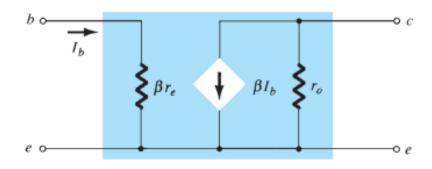


FIG. 5.16

 r_e model for the common-emitter transistor configuration including effects of r_o .

The r_e Transistor Model (CB)

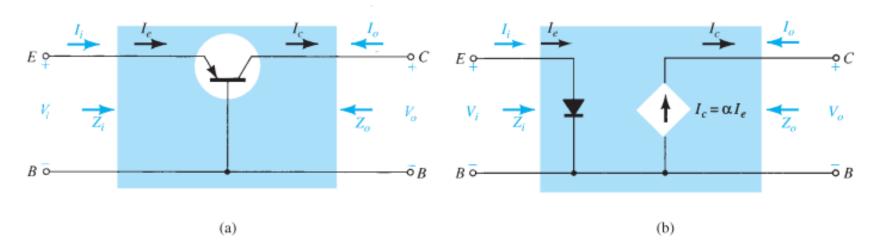


FIG. 5.17

(a) Common-base BJT transistor; (b) equivalent circuit for configuration of (a).

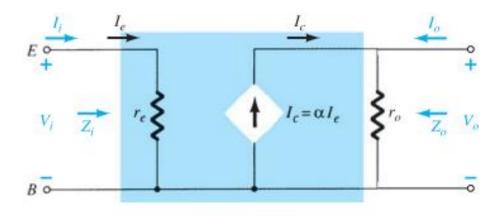


FIG. 5.18

Common base r_e equivalent circuit.

The r_e Transistor Model (CC)

• For the common-collector configuration, the model defined for the common-emitter configuration of is normally applied rather than defining a model for the common-collector configuration.

npn versus pnp

- The dc analysis of *npn* and *pnp* configurations is quite different in the sense that the currents will have opposite directions and the voltages opposite polarities.
- However, for an ac analysis where the signal will progress between positive and negative values, the ac equivalent circuit will be the same.

C.E. Fixed Bias Configuration

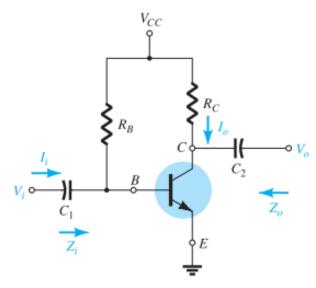
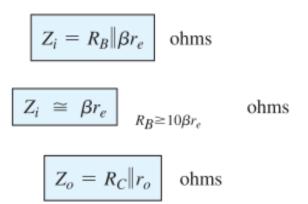
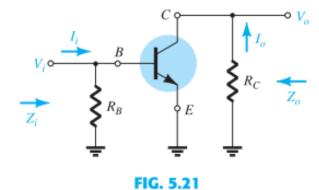


FIG. 5.20

Common-emitter fixed-bias configuration.



$$Z_o \cong R_C$$
 $r_o \ge 10R_C$



Network of Fig. 5.20 following the removal of the effects of V_{CC} , C_1 , and C_2 .

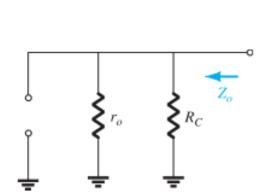


FIG. 5.23

Determining Z_o for the network of Fig. 5.22.

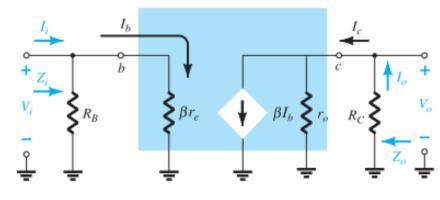


FIG. 5.22

Substituting the r_e model into the network of Fig. 5.21.

$$V_o = -\beta I_b(R_C || r_o)$$

$$I_b = \frac{V_i}{\beta r_e}$$

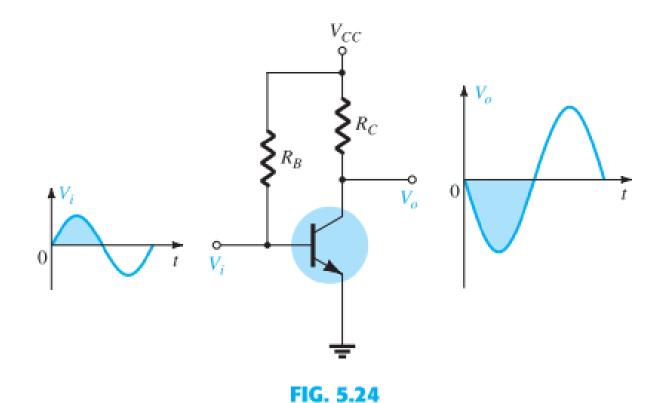
$$V_o = -\beta \left(\frac{V_i}{\beta r_e}\right) (R_C || r_o)$$

$$A_v = \frac{V_o}{V_i} = -\frac{(R_C \| r_o)}{r_e}$$

$$A_v = -\frac{R_C}{r_e}$$

$$r_o \ge 10R_C$$

C.E. Fixed Bias Configuration (Phase relationship)



Demonstrating the 180° phase shift between input and output waveforms.

C.E. Fixed Bias Configuration (Example)

EXAMPLE 5.1 For the network of Fig. 5.25:

- a. Determine r_e .
- b. Find Z_i (with $r_o = \infty \Omega$).
- c. Calculate Z_o (with $r_o = \infty \Omega$).
- d. Determine A_{ν} (with $r_{o} = \infty \Omega$).
- e. Repeat parts (c) and (d) including $r_o = 50 \text{ k}\Omega$ in all calculations and compare results.

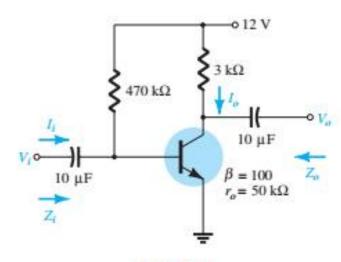


FIG. 5.25 Example 5.1.

Solution:

a. DC analysis:

$$I_B = \frac{V_{CC} - V_{BE}}{R_B} = \frac{12 \text{ V} - 0.7 \text{ V}}{470 \text{ k}\Omega} = 24.04 \,\mu\text{A}$$

$$I_E = (\beta + 1)I_B = (101)(24.04 \,\mu\text{A}) = 2.428 \,\text{mA}$$

$$r_e = \frac{26 \,\text{mV}}{I_E} = \frac{26 \,\text{mV}}{2.428 \,\text{mA}} = \mathbf{10.71 \,\Omega}$$

b.
$$\beta r_e = (100)(10.71 \ \Omega) = 1.071 \ k\Omega$$

 $Z_i = R_B \|\beta r_e = 470 \ k\Omega \|1.071 \ k\Omega = 1.07 \ k\Omega$

c.
$$Z_o = R_C = 3 \text{ k}\Omega$$

d.
$$A_v = -\frac{R_C}{r_e} = -\frac{3 \text{ k}\Omega}{10.71 \Omega} = -280.11$$

e.
$$Z_o = r_o ||R_C = 50 \text{ k}\Omega||3 \text{ k}\Omega = 2.83 \text{ k}\Omega \text{ vs. } 3 \text{ k}\Omega$$

$$A_v = -\frac{r_o \| R_C}{r_e} = \frac{2.83 \text{ k}\Omega}{10.71 \Omega} = -264.24 \text{ vs.} -280.11$$

C.E. Voltage-Divider Bias

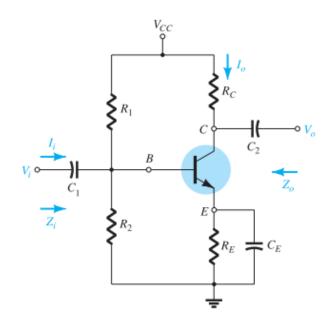


FIG. 5.26 Voltage-divider bias configuration.

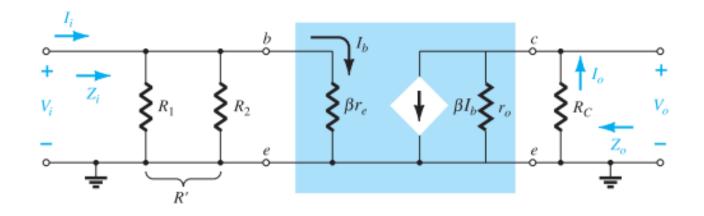


FIG. 5.27
Substituting the r_e equivalent circuit into the ac equivalent network of Fig. 5.26.

$$R' = R_1 \| R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

$$Z_i = R' \| \beta r_e$$

$$Z_o = R_C \| r_o$$

$$Z_o \cong R_C$$
 $r_o \ge 10R$

$$V_o = -(\beta I_b)(R_C || r_o)$$

$$I_b = \frac{V_i}{\beta r_e}$$

$$V_o = -\beta \left(\frac{V_i}{\rho_r}\right)(R_C || r_o)$$

$$A_v = \frac{V_o}{V_i} = \frac{-R_C \| r_o}{r_e}$$

$$A_v = \frac{V_o}{V_i} \cong -\frac{R_C}{r_e}$$

180° phase shift

C.E. Emitter Bias Configuration (Un-bypassed without ro)

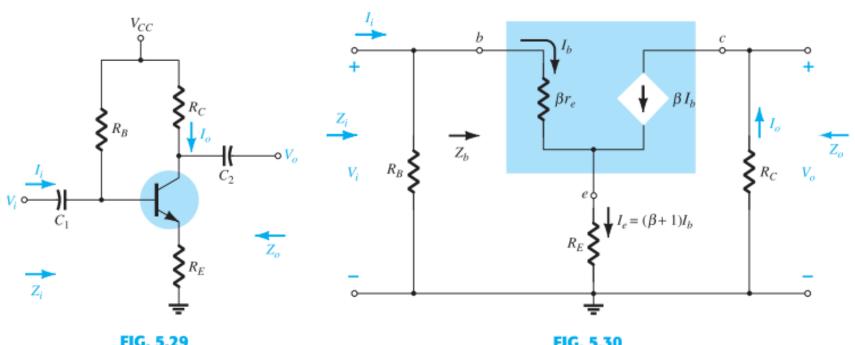


FIG. 5.29

CE emitter-bias configuration.

Substituting the r_e equivalent circuit into the ac equivalent network of Fig. 5.29.

FIG. 5.30
Equivalent circuit into the ac equivalent network of Fig. 5.29.

Defining the input impedance of a transistor with an unbypassed emitter resistor.

$$Z_b = \beta r_e + (\beta + 1)R_E$$
 $Z_b \cong \beta R_E$

$$V_i = I_b \beta r_e + I_e R_E$$

$$V_i = I_b \beta r_e + (\beta + I) I_b R_E$$

$$Z_b = \frac{V_i}{I_b} = \beta r_e + (\beta + 1) R_E$$

$$Z_b = \beta r_e + (\beta + 1)R_E$$

$$Z_b \cong \beta r_e + \beta R_E$$

$$Z_b \cong \beta (r_e + R_E)$$

$$Z_b \cong \beta R_E$$

$$Z_i = R_B \| Z_b$$

$$Z_o = R_C$$

FIG. 5.31

C.E. Emitter Bias Configuration (Un-bypassed without ro)

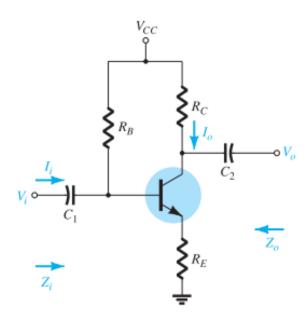


FIG. 5.29

CE emitter-bias configuration.

$$I_b = \frac{V_i}{Z_b}$$

$$V_o = -I_o R_C = -\beta I_b R_C$$

$$= -\beta \left(\frac{V_i}{Z_b}\right) R_C$$

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{\beta R_{C}}{Z_{b}}$$

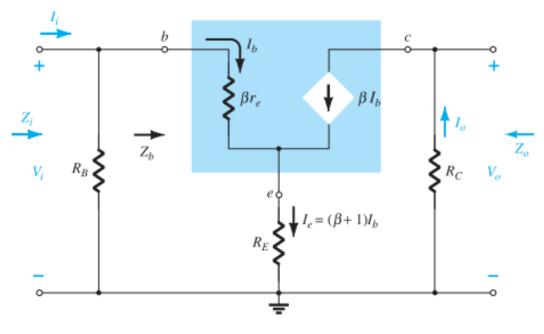


FIG. 5.30

Substituting the r_e equivalent circuit into the ac equivalent network of Fig. 5.29.

$$Z_b \cong \beta(r_e + R_E)$$

$$Z_b \cong \beta R_E$$

$$A_v = \frac{V_o}{V_i} \cong -\frac{R_C}{r_e + R_E}$$

$$A_{v} = \frac{V_{o}}{V_{i}} \cong -\frac{R_{C}}{R_{E}}$$

180° phase shift

C.E. Emitter Bias Configuration (Un-bypassed with ro)

$$Z_i = R_B \| Z_b$$

$$Z_b = \beta r_e + \left[\frac{(\beta + 1) + R_C/r_o}{1 + (R_C + R_E)/r_o} \right] R_E$$

$$R_C/r_o \text{ is always much less than } (\beta + 1),$$

$$C(\beta + 1)R_E$$

$$T_o \gg r_e,$$

$$Z_o \cong R_C || r_o \left[1 + \frac{\beta}{1 + \frac{\beta r_e}{R_E}} \right]$$

$$Z_b \cong \beta r_e + \frac{(\beta + 1)R_E}{1 + (R_C + R_E)/r_o}$$

For
$$r_o \ge 10(R_C + R_E)$$
,

$$Z_b \cong \beta r_e + (\beta + 1)R_E$$

$$Z_b \cong \beta(r_e + R_E)$$
 $r_o \ge 10(R_C + R_E)$

$$Z_o = R_C \left\| \left[r_o + \frac{\beta(r_o + r_e)}{1 + \frac{\beta r_e}{R_E}} \right] \right\|$$

$$r_o \gg r_e$$

$$Z_o \cong R_C \| r_o \| 1 + \frac{\beta}{1 + \frac{\beta r_e}{R_E}}$$

$$Z_b \cong \beta r_e + \frac{(\beta + 1)R_E}{1 + (R_C + R_E)/r_o}$$
 $Z_o \cong R_C || r_o \left[1 + \frac{1}{\frac{1}{\beta} + \frac{r_e}{R_E}} \right]$

Typically $1/\beta$ and r_e/R_E are less than one with a sum usually less than one.

$$Z_o \cong R_C$$
 Any level of r

$$Z_o = R_C \| \left[r_o + \frac{\beta(r_o + r_e)}{1 + \frac{\beta r_e}{R_E}} \right]$$

$$A_v = \frac{V_o}{V_i} = \frac{-\frac{\beta R_C}{Z_b} \left[1 + \frac{r_e}{r_o} \right] + \frac{R_C}{r_o}}{1 + \frac{R_C}{r_o}}$$

$$\frac{r_e}{r_o} \ll 1$$
,

$$rac{r_e}{r_o} \ll 1,$$

$$A_v = rac{V_o}{V_i} \cong rac{-rac{eta R_C}{Z_b} + rac{R_C}{r_o}}{1 + rac{R_C}{r_o}}$$

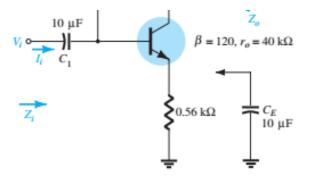
$$r_o \geq 10R_C$$

$$A_{v} = \frac{V_{o}}{V_{i}} \cong -\frac{\beta R_{C}}{Z_{b}}$$

$$r_{o} \geq 10R_{C}$$

C.E. Emitter Bias Configuration (bypassed)

Same as CE fixed bias config.



Portion bypassed

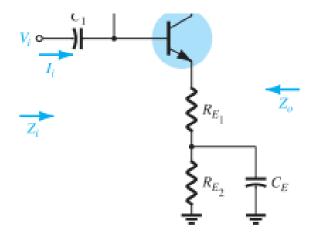


FIG. 5.35

An emitter-bias configuration with a portion of the emitter-bias resistance bypassed in the ac domain.

C.E. Emitter Bias Configuration (Example)

EXAMPLE 5.3 For the network of Fig. 5.32, without C_E (unbypassed), determine:

- a. r_e.
- b. Z_i .
- c. Z_o .
- d. A_{ν} .

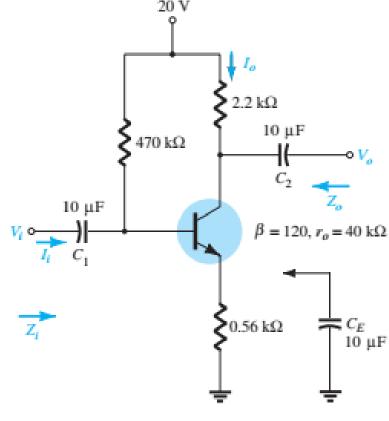


FIG. 5.32

Example 5.3.

Solution:

a. DC:

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E} = \frac{20 \text{ V} - 0.7 \text{ V}}{470 \text{ k}\Omega + (121)0.56 \text{ k}\Omega} = 35.89 \,\mu\text{A}$$

$$I_E = (\beta + 1)I_B = (121)(35.89 \,\mu\text{A}) = 4.34 \,\text{mA}$$
and
$$r_e = \frac{26 \,\text{mV}}{I_E} = \frac{26 \,\text{mV}}{4.34 \,\text{mA}} = 5.99 \,\Omega$$

b. Testing the condition $r_o \ge 10(R_C + R_E)$, we obtain

$$40 \text{ k}\Omega \ge 10(2.2 \text{ k}\Omega + 0.56 \text{ k}\Omega)$$

 $40 \text{ k}\Omega \ge 10(2.76 \text{ k}\Omega) = 27.6 \text{ k}\Omega \text{ (satisfied)}$

Therefore,

$$Z_b \cong \beta(r_e + R_E) = 120(5.99 \Omega + 560 \Omega)$$

= 67.92 k Ω
 $Z_i = R_B || Z_b = 470 k $\Omega || 67.92 k\Omega$
= 59.34 k $\Omega$$

c. $Z_o = R_C = 2.2 \text{ k}\Omega$

d. $r_o \ge 10R_C$ is satisfied. Therefore,

$$A_v = \frac{V_o}{V_i} \cong -\frac{\beta R_C}{Z_b} = -\frac{(120)(2.2 \text{ k}\Omega)}{67.92 \text{ k}\Omega}$$

= -3.89

compared to -3.93 using Eq. (5.20): $A_v \cong -R_C/R_E$.

C.E. Emitter Bias Configuration (Example)

EXAMPLE 5.3 For the network of Fig. 5.32, without C_E (unbypassed), determine:

- a. r_e .
- b. Z_i
- c. Z_o .
- d. A_v .

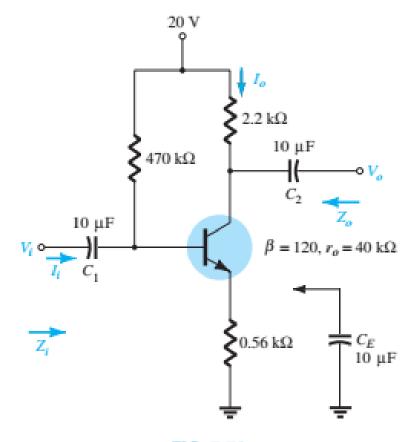


FIG. 5.32 Example 5.3. **EXAMPLE 5.4** Repeat the analysis of Example 5.3 with C_E in place.

Solution:

- a. The dc analysis is the same, and $r_e = 5.99 \Omega$.
- R_E is "shorted out" by C_E for the ac analysis. Therefore,

$$Z_i = R_B \| Z_b = R_B \| \beta r_e = 470 \text{ k}\Omega \| (120)(5.99 \Omega)$$

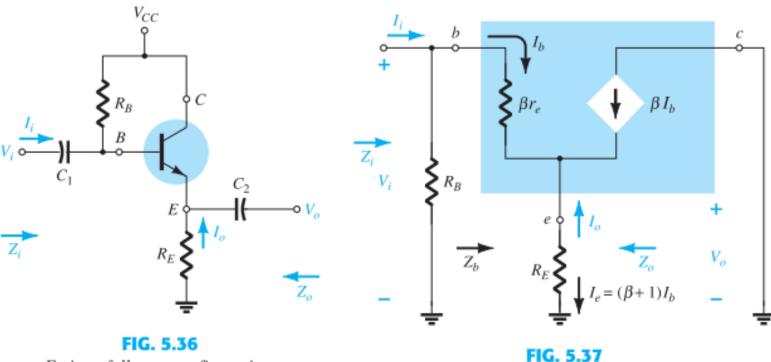
= 470 k\Omega \| 718.8 \Omega \approx 717.70 \Omega

c.
$$Z_o = R_C = 2.2 \text{ k}\Omega$$

d.
$$A_v = -\frac{R_C}{r_e}$$

$$= -\frac{2.2 \text{ k}\Omega}{5.99 \Omega} = -367.28 \text{ (a significant increase)}$$

Emitter Follower (Common Collector) Configuration



Emitter-follower configuration.

Substituting the r_e equivalent circuit into the ac equivalent network of Fig. 5.36.

$$Z_i = R_B \| Z_b$$

$$Z_b = \beta r_e + (\beta + 1)R_E$$

$$Z_b \cong \beta(r_e + R_E)$$

$$Z_b \cong \beta R_E \Big|_{R_E \gg r_c}$$

Emitter Follower Configuration (o/p impedance and Gain)

$$I_e = (\beta + 1)I_b = (\beta + 1)\frac{V_i}{Z_b}$$

$$I_e = \frac{(\beta + 1)V_i}{\beta r_e + (\beta + 1)R_E}$$

$$I_e = \frac{V_i}{[\beta r_e/(\beta + 1)] + R_E}$$

$$(\beta + 1) \cong \beta$$

$$\frac{\beta r_e}{\beta + 1} \cong \frac{\beta r_e}{\beta} = r_e$$

$$I_e \cong \frac{V_i}{\beta}$$

$$I_e \cong \frac{V_i}{r_e + R_E}$$

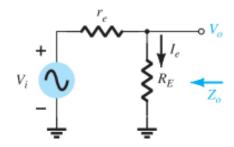
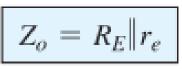


FIG. 5.38

Defining the output impedance for the emitter-follower configuration.



$$Z_o \, \cong \, r_e$$

$$V_o = \frac{R_E V_i}{R_E + r_e}$$

$$A_v = \frac{V_o}{V_i} = \frac{R_E}{R_E + r_e}$$

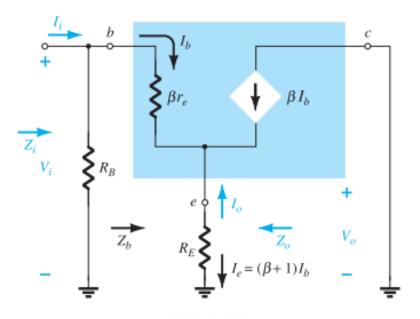


FIG. 5.37

Substituting the r_e equivalent circuit into the ac equivalent network of Fig. 5.36.

Because R_E is usually much greater than r_e ,

$$R_E + r_e \cong R_E$$
:

$$A_v = \frac{V_o}{V_i} \cong 1$$
 in phase

Emitter Follower Configuration.. Effect of r_o

$$Z_b = \beta r_e + \frac{(\beta + 1)R_E}{1 + \frac{R_E}{r_o}}$$

$$Z_o = r_o ||R_E|| \frac{\beta r_e}{(\beta + 1)}$$

$$Z_o = r_o \|R_E\| \frac{\beta r_e}{(\beta + 1)}$$

$$r_o \ge 10R_E$$

$$Z_b = \beta r_e + (\beta + 1)R_E$$

$$Z_o = r_o \|R_E\| r_e$$

$$Z_b \cong \beta(r_e + R_E)$$
 $r_o \ge 10R_E$

$$Z_o \cong R_E \| r_e \|_{Any r_o}$$

$$Z_o \cong r_e$$

$$A_{\nu} = \frac{(\beta + 1)R_E/Z_b}{1 + \frac{R_E}{r_o}}$$

$$A_{v} \cong \frac{\beta R_{E}}{Z_{b}}$$

$$Z_b \cong \beta(r_e + R_E)$$

$$A_{v} \cong \frac{\beta R_{E}}{\beta (r_{e} + R_{E})}$$

$$A_v \cong rac{R_E}{r_e + R_E}$$

Emitter Follower Configuration (Example (wo/ro)

EXAMPLE 5.7 For the emitter-follower network of Fig. 5.39, determine:

- a. r_e.
- b. Z_i .
- c. Z_o .
- d. A_v .
- e. Repeat parts (b) through (d) with $r_o = 25 \text{ k}\Omega$ and compare results.

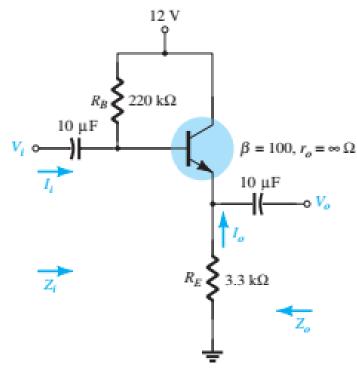


FIG. 5.39

Solution:

a.
$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E}$$

 $= \frac{12 \text{ V} - 0.7 \text{ V}}{220 \text{ k}\Omega + (101)3.3 \text{ k}\Omega} = 20.42 \,\mu\text{A}$
 $I_E = (\beta + 1)I_B$
 $= (101)(20.42 \,\mu\text{A}) = 2.062 \,\text{mA}$
 $r_e = \frac{26 \,\text{mV}}{I_E} = \frac{26 \,\text{mV}}{2.062 \,\text{mA}} = 12.61 \,\Omega$
b. $Z_b = \beta r_e + (\beta + 1)R_E$
 $= (100)(12.61 \,\Omega) + (101)(3.3 \,\text{k}\Omega)$
 $= 1.261 \,\text{k}\Omega + 333.3 \,\text{k}\Omega$
 $= 334.56 \,\text{k}\Omega \cong \beta R_E$
 $Z_i = R_B \| Z_b = 220 \,\text{k}\Omega \| 334.56 \,\text{k}\Omega$
 $= 132.72 \,\text{k}\Omega$
c. $Z_o = R_E \| r_e = 3.3 \,\text{k}\Omega \| 12.61 \,\Omega$
 $= 12.56 \,\Omega \cong r_e$
d. $A_v = \frac{V_o}{V_i} = \frac{R_E}{R_E + r_e} = \frac{3.3 \,\text{k}\Omega}{3.3 \,\text{k}\Omega + 12.61 \,\Omega}$
 $= 0.996 \cong 1$

Emitter Follower Configuration (Example w/ro)

e. Checking the condition
$$r_o \ge 10R_E$$
, we have
$$25 \text{ k}\Omega \ge 10(3.3 \text{ k}\Omega) = 33 \text{ k}\Omega$$
 which is *not* satisfied. Therefore,
$$Z_b = \beta r_e + \frac{(\beta + 1)R_E}{1 + \frac{R_E}{r_o}} = (100)(12.61 \Omega) + \frac{(100 + 1)3.3 \text{ k}\Omega}{1 + \frac{3.3 \text{ k}\Omega}{25 \text{ k}\Omega}}$$

$$= 1.261 \text{ k}\Omega + 294.43 \text{ k}\Omega$$

$$= 295.7 \text{ k}\Omega$$
 with
$$Z_i = R_B \|Z_b = 220 \text{ k}\Omega \|295.7 \text{ k}\Omega$$

$$= 126.15 \text{ k}\Omega \text{ vs. } 132.72 \text{ k}\Omega \text{ obtained earlier}$$

$$Z_o = R_E \|r_e = 12.56 \Omega \text{ as obtained earlier}$$

 $A_{v} = \frac{(\beta + 1)R_{E}/Z_{b}}{\left[1 + \frac{R_{E}}{r}\right]} = \frac{(100 + 1)(3.3 \text{ k}\Omega)/295.7 \text{ k}\Omega}{\left[1 + \frac{3.3 \text{ k}\Omega}{25 \text{ k}\Omega}\right]}$

matching the earlier result.

 $= 0.996 \cong 1$

Emitter Follower Configuration (Diff. Biasing)

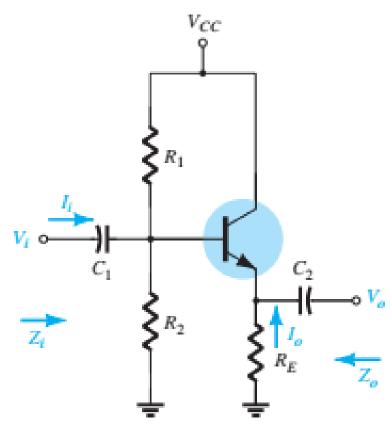


FIG. 5.40

Emitter-follower configuration with a voltage-divider biasing arrangement.

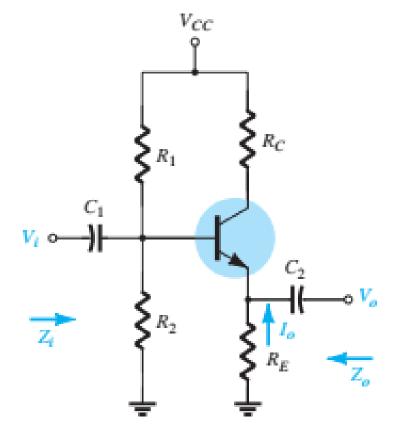


FIG. 5.41

Emitter-follower configuration with a collector resistor R_C .

